Parameter | Key Words or Phrases | Type of Data |
---|---|---|
\(\mu\) | Mean; average | Quantitative |
\(p\) | Proportion; percentage; fraction; rate | Qualitative |
\(\sigma^2\) (optional) | Variance; variability; spread | Quantitative |
Math 216: Statistical Thinking
Key Question: How can we use sample data to make reliable inferences about unknown population parameters? Statistical estimation provides the mathematical framework for quantifying uncertainty in our conclusions!
Real-World Applications:
Parameter | Key Words or Phrases | Type of Data |
---|---|---|
\(\mu\) | Mean; average | Quantitative |
\(p\) | Proportion; percentage; fraction; rate | Qualitative |
\(\sigma^2\) (optional) | Variance; variability; spread | Quantitative |
Statistical Estimation Framework
Point Estimator: A single value that provides our best guess for the population parameter
Interval Estimator (Confidence Interval): A range of plausible values that likely contains the true parameter
Key Insight: While point estimates give us a single “best guess,” confidence intervals provide the precision and reliability of that guess!
Why Confidence Intervals Matter
Beyond Point Estimates: Confidence intervals provide more information than single values—they quantify the precision and reliability of our estimates!
Key Benefits:
Statistical Significance: Confidence intervals are the foundation for hypothesis testing and statistical inference!
The value \(z_\alpha\) is defined as the value of the standard normal random variable \(z\) such that the area \(\alpha\) will lie to its right. In other words, \(P\left(z>z_\alpha\right)=\alpha\).
R Functions for Confidence Interval Calculations
Critical Value Calculations:
qnorm(0.95) = 1.645
qnorm(0.975) = 1.960
qnorm(0.995) = 2.576
Probability Calculations:
pnorm(1) - pnorm(-1) = 0.6827
pnorm(2) - pnorm(-2) = 0.9545
pnorm(3) - pnorm(-3) = 0.9973
Confidence Interval Formula: \[\text{CI} = \bar{x} \pm z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}\]
Margin of Error: \[\text{ME} = z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}\]
Practical Exercises Using R
Exercise 1: Basic Confidence Interval Calculation
85 ± 1.96 * (12/sqrt(64)) = (82.06, 87.94)
85 + c(-1,1) * qnorm(0.975) * 12/sqrt(64)
Exercise 2: Sample Size Determination
n = (1.96 * 10 / 2)^2 = 96.04 → 97
ceiling((qnorm(0.975) * 10 / 2)^2)
Practical Exercises Using R
Exercise 3: Confidence Level Impact
50 ± 1.645*(8/6) = (47.81, 52.19)
50 ± 1.96*(8/6) = (47.39, 52.61)
50 ± 2.576*(8/6) = (46.57, 53.43)
Exercise 4: Real-World Interpretation