Activity 9

MATH 216: Statistical Thinking

Binomial Distribution Practice

Time Allocation: 15 minutes total

Part 1: Distribution Analysis (5 minutes)

Chemotherapy Success Rates:

x (successes) 0 1 2 3 4 5
p(x) 0.002 0.029 0.132 0.309 0.360 0.168

Calculate:

  1. Mean (\(\mu\)) = _________________________
  2. Standard Deviation (\(\sigma\)) = ______________

Chebyshev’s Rule:

  • Interval \(\mu \pm 2\sigma\) covers at least ______% of data
  • Actual probability in this interval: _______________

Part 2: Binomial Formula Application (5 minutes)

Calculate: \(P(x=2)\) for \(X \sim \text{Bin}(5, 0.3)\)

Using formula: \(P(x) = \binom{n}{x} p^x q^{n-x}\)

Show work:

Result: \(P(x=2)\) = _________________________

Part 3: Binomial Properties (5 minutes)

Fitness Test Scenario:

  • 10% of adults pass fitness test
  • 4 adults randomly selected
  • X = number who pass

Binomial Conditions Check:

  • Fixed trials? □ Yes □ No
  • Independence? □ Yes □ No
  • Two outcomes? □ Yes □ No
  • Constant probability? □ Yes □ No

Calculate: \(P(X=3)\) = _________________________

Compare Distributions:

  • Bin(4, 0.1): \(\mu\) = ______, \(\sigma^2\) = ______, \(\sigma\) = ______
  • Bin(40, 0.1): \(\mu\) = ______, \(\sigma^2\) = ______, \(\sigma\) = ______
  • Bin(400, 0.1): \(\mu\) = ______, \(\sigma^2\) = ______, \(\sigma\) = ______